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Abstract. A Gaussian approximation for the synaptic noise and the n + 0 replica method 
are used to study spin-glass models of neural networks near saturation, i.e. when the 
number p of stored patterns increases with the size of the network N a s p  = aN.  Qualitative 
features are predicted surprisingly well. For instance, at T=O the linear Hopfield network 
provides effective associative memory with errors not exceeding 0.05% for a c a<= 0.15. 
In a network with clipped synapses, the number of patterns which can be stored with some 
given error tolerance is reduced by a factor of 2/7r as compared with the linear Hopfield 
model. A simple learning within bounds algorithm is found to continuously interpolate 
between the linear Hopfield model and the network with clipped synapses. 

1. Introduction 

The recent theoretical interest in spin glasses as models of neural networks stems from 
the work of Little (1974) and Hopfield (1982), and  a considerable number of research 
papers on the subject have appeared in the literature (see, for example, Peretto 1984, 
Amit er a1 1985a,b, 1987, Kinzel 1985, Nadal et a1 1986, Toulouse er a1 1986, 
Sompolinsky 1986, van Hemmen and Kuhn 1986). Several quantitative studies, analyti- 
cal as well as numerical, have been based on the Hopfield model, where the states of 
the neurons are modelled by Ising spins S , ,  1 S i S N and the Monte Carlo dynamics 
of the network is governed by the Hamiltonian 

H = - J(,S,S,. 
( I] 

One stores the information, i.e. patterns {.$, 1 s i S N }  with 1 s p s p ,  in couplings 
according to 

and it is assumed that the ( f  (=*1) are quenched independent random variables. 
Information retrieval is defined as the existence of (meta-)stable states which have a 
non-zero overlap 

with one of the stored patterns. Here ( ) denotes a thermal average with respect to a 
specific ergodic component. 
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For a finite number p of stored patterns the model has been solved exactly by Amit 
et a1 (1985a) in the thermodynamic limit: information retrieval is error-free, i.e. m y  + 1 
as T +  0. Of particular interest is the question of the storage capacity of the network 
(Hopfield 1982, Weisbuch 1985, Amit et a1 1985b, 1987, Kinzel 1985). From simulations 
and Gaussian noise arguments, Hopfield (1982) concluded that the system provides 
associative memory for p 6 a,N with a,= 0.1-0.2, but an abundance of errors precludes 
meaningful retrieval when p 3 a,N. Amit et a1 (1985b, 1987) calculated the storage 
capacity by studying the statistical mechanics of the network with p = a N ,  O <  a < 1, 
within replica theory. They found that the system exhibits associative memory for 
p s a,N with cyc=  0.14 and that, as a passes through a,, the retrieval overlaps (3) 
vanish discontinuously. In contrast, investigating the persistence of patterns under 
synchronous energy relaxation dynamics, Kinzel ( 1985) estimated that non-zero 
retrieval overlaps would exist up to p = aoN, with a. = 2/7,  and that the overlaps 
would vanish continuously at ao. Information retrieval with errors not exceeding 
0.05% was found to be possible for p S  a,N with a,=0.15. 

In this paper we turn to the question of storage capacity of generalised Hopfield 
memories, including the original linear Hopfield model, a model with clipped synapses 
and a family of models which continuously interpolates between these two. We study 
the statistical mechanics of these models, utilising the n-replica method. However, we 
use an approach which differs from that of Amit er al. It contains approximations 
concerning correlations between synaptic strengths J,, which are partly ignored. While 
our calculations must be regarded as approximate as far as storage capacity is con- 
cerned, they represent an exact analysis of a model of learning in a pre-structured 
brain, as proposed by Toulouse et a1 (1986). Moreover, our method allows us to study 
also the non-linear models mentioned above. Most of our discussion will be within 
replica symmetric theory. 

2. Statistical mechanics of the Hopfield model near saturation 

We study the statistical mechanics of (1) and (2) in the limit p = aN,  N + 00. To this 
end, we evaluate 

Here (ij) denotes independent pairs of lattice sites, p = 1, .  . . , n is a replica index and 
[ ] stands for an average over the 6. Addressing the question of the storage capacity 
of the network, we are going to check whether the system allows (meta-)stable states 
which have non-zero overlaps (3) with one of the embedded patterns. To do this, we 
proceed as Amit et a1 did. We single out a finite number of patterns, say v = 1, .  . . , s, 
and calculate whether as N+oo (3 )  retains non-zero values in the presence of the 
static (Gaussian) synaptic noise generated by the p - s = a N  - s remaining patterns. 

The evaluation of the configuration average in (4) is, therefore, performed in two 
steps. We decompose the couplings J, into two parts JS’, Ji:’ with 
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Here (5a)  depends on the first s ‘low’ 6 and (5b) on the remaining ‘high’ 6. Then we 
have 

J,, = I;’+ aJ;’. (5c) 

P(J: ) )  - ( 2 = / ~ ) - ’ ’ ~  exp(-p~!J’~/2) ( 6 )  

As N becomes large ( s  remaining finite), the J!;’ retain their discrete nature, whereas 
the 53’ obey a Gaussian distribution 

by the central limit theorem. We now take 

P({JI:’H = n P(J1:’) 
(11) 

(7) 

thereby ignoring correlations in the synaptic noise generated by the p - s high t. Within 
this approximation, the elementary frustration loop [ J~,”J$”J~’] is zero whereas if the 
high-5 average were performed exactly the result would be P - ~ .  Since we are interested 
in the saturation limit p = a N ,  the difference between the two results vanishes when 
the sample size goes to infinity. It should however be noted that the number of 
elementary loops also increases with the system size, so that (7) is asymptotically exact 
only in the limit a + a. However, we have reason to believe that the results based on 
this approximation are reasonable also for finite a. First, for a << 1 where we cannot 
a priori expect this approximation to be good, we obtain values for the retrieval overlaps 
which are exponentially close to unity, in agreement with previous analyses (Hopfield 
1982, Amit et a1 1985b, Kinzel 1985). Second, performing the a + 0 limit in the linear 
Hopfield model, we recover the exact finite-p equations of Amit el a1 (1985a). 

Using the approximation (7)  for the {J: ; ’ }  distribution, we perform a partial average 
over the high 5 in (4) to obtain 

where 

C ( N ,  n )  =exp[ap2(Nn -n2)/4-psn/2]  (9) 

and where [ ] ( I )  denotes an average over the low 6, which remains to be performed. 
We now linearise the exponential in (8): 

(10) 
(11 

x [ Tr{y 1 exp( P Y,, S7 S: + 4 2 51” Sr ) ] 
( P P )  1 U.P I 

so that the spin trace factorises with respect to the lattice sites. 
Before proceeding, we shall briefly discuss the points where our approach differs 

from that of Amit et a1 and where their approach encounters difficulties which, we 
feel, one might want to avoid. 

The principal difference between the approach of Amit et a1 and our approach is 
that Gaussian linearisation and high-6 average are carried out in reverse order. While 
their procedure has the distinct advantage that the high-5 average can be performed 
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exactly (at least for the linear model considered here), there is a serious drawback: 
the Gaussian linearisation in their approach leads to integrals whose evaluation requires 
expansion of a hyperbolic cosine to second order in its supposedly small argument. 
Unfortunately this procedure transforms integrals which are initially convergent into 
generalised Gaussian integrals which do  not generally exist. For P > pc = 1 the quad- 
ratic form involved is no longer positive definite, the diagonal elements of the matrix 
being 1 - P (for all 1 s n EN). However, it is conceivable that in the limit n + 0 things 
become correct but there is no guarantee that one finds the proper saddle point, whence 
our motivation to take a second look at the problem. 

We now proceed and rewrite equation (8) as 

Here trlsy, denotes a trace over the 2” states of the replicated spins on a single lattice 
site and we have exploited the fact that the IOW-& average [ I ( , )  can be obtained by 
self-averaging. For large N the integral in ( 1  1 )  is dominated by its saddle-point value. 
The physical interpretation of the parameters y,, and zvp appearing in ( 1  1 )  is determined 
from the saddle-point equations. We find 

1 
Yp, = PV%,, = P&; c (SPS3, P + U  

I 

( 1 2 )  
1 

z v p  = @m,, = 4 c &:(sP), v = l ,  . . . ,  s ; p = l ,  . . . ,  n 

with 

Thus qpo is a spin-glass order parameter and m., is related to the retrieval overlaps 
defined in ( 3 ) .  Unlike Amit er a1 we do not find, nor do we require, an order parameter 
analogous to their r,,. 

The average free energy per spin, as obtained by the n-replica method?, is 

Inserting (9), ( 1  1 )  and ( 1 2 )  we obtain 

t We prefer this formulation (van Hemmen and Palmer 1979) to the conventional one, because it allows 
limits to be taken in the correct order. 
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We shall now proceed to look for replica symmetric solutions of (12) with 

%U = 4 P + U  

muo = m u  p = 1,. . . , n. 

It is then straightforward to evaluate the free energy. The result is 

where m = ( m  ”) and q satisfy the fixed point equations 

m =((g t anh (P+z+pm.  6))) 
q = ( ( t a n h ’ ( p 6 z  + pm 6))). 

Here (( )) denotes the combination of a Gaussian zero-mean/unit-variance average 
with respect to z and a discrete average over the 6 which occurs in (17). 

Note that by taking the limit a + 0 in equations (18) we recover the equations 
describing the statistical physics of the Hopfield model for a finite number (s )  of 
embedded patterns as derived by Amit et a1 (1985a). 

For non-zero a,  equations (18) have two types of solution. 
(i) A solution with m = 0, q # 0. It represents a true spin-glass ( S G )  state which 

has no macroscopic overlap with any of the embedded patterns. Note that in the pure 
SG phase q obeys the fixed point equation 

d z  
q = 5 JT;; e-z2J’ t a n h ( P 6 z ) .  

This is precisely the Sherrington-Kirkpatrick ( 1975) fixed point equation for replica 
symmetric solutions of the infinite range Edwards-Anderson spin glass having indepen- 
dent random couplings with a Gaussian distribution of zero mean and  variance m. 

(ii) The so-called retrieval solutions with m # 0, q # 0. The solutions, which exist 
for sufficiently small a, are responsible for the functioning of the network as a n  
associative memory. 

In what follows, we shall be concerned with the nature and  existence of the retrieval 
solutions. The most important retrieval states are those which have macroscopic 
overlaps with a single pattern, m p  = m&. Following Amit et a1 (1985b), we discuss 
the nature of these solutions to resolve the issue of the storage capacity of the network. 

For retrieval states with m p  = mSpv, equations (18) are 

m = t a n h ( P f i z  + p m )  

q = & e-’”’ t a n h ’ ( p 6 z  + p m  j. 

Again, these equations describe replica symmetric solutions of an  SK spin glass having 
independent random couplings with a Gaussian distribution of common mean 1/ N 
and variance m. 
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At low temperatures, equations (20) do not, however, give rise to a maximum of 
(15). Replica symmetry is known to be broken below the de Almeida-Thouless (1978) 
line 

( k B T ) ’ =  a , e “ 2 ” s e c h 4 ( p ~ z + p m )  dz 
2T 

which for small a takes the form 

k , ~ - j  4 (G) a ”* exp( -&). 
For a + 0, replica symmetry breaking (RSB) occurs exponentially close to T = 0, where 
the system is already almost fully ordered and we expect the effects of RSB to be weak 
in this limit. 

Ignoring the implications of RSB for a while, we discuss the solution of (20) at 
T = 0. As T +  0, equations (20) yield 

q = l  

m = erf( m / X G ) .  

Non-zero solutions for the amplitude m of the retrieval overlap exist only for a 6 a. = 
2 / ~ .  Near a. we have 

m = m ( a ) K ( a O - a ) 1 ’ 2 .  (24) 

Since for a 6 a. the retrieval amplitude is small, the system does not provide useful 
associative memory in that regime. To give an estimate of the storage capacity, we 
must specify an error tolerance (thereby, of course, introducing an element of arbitrari- 
ness into the definition). If we require that the retrieval error does not exceed 0.05%, 
then efficient associative memory is provided for a S a ,  L- 0.15. 

These results were previously derived by Kinzel (1985) without using replicas on 
the basis of estimating the persistence of patterns under synchronous energy relaxation 
dynamics. The physical interpretation of a. in that approach is that, under completely 
parallel dynamics, an initial state which has some small macroscopic overlap with one 
of the embedded patterns will move away from that pattern if a 3 ao.  

Summarising, in the independent Gaussian approximation (7) the Hopfield memory 
provides efficient associative memory for a S a,= 0.15. As p = a N  with a > a,, the 
memory function rapidly deteriorates. Retrieval overlaps with a single pattern are 
non-zero for a < a. = 2/ T where they vanish continuously. There is no indication of 
a discontinuous transition, as found by Amit et a1 (1985b, 1987). However, as a + 0, 
we do  recover the exact finite-p solution of Amit er a1 (1985a). 

Before closing this section, we note that the calculations presented above are 
interesting in another context, namely they represent an exact analysis of learning in 
a pre-structured brain (Toulouse et a1 1986). To establish this correspondence, we 
rewrite the couplings Jij (equations (5a)-(5c)) in the form 

with 
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The common prefactor Ja can be absorbed by rescaling the temperature. The J :  are 
interpreted as inherent Gaussian distributed synaptic strengths, with zero mean and 
variance 1/ N, and they provide a spin-glassy initial state of the network. Patterns are 
then learnt according to the generalised Hebb rule. The retrieval quality is now a 
function of E = 1 / J a  and non-zero retrieval overlaps exist only for E > E,,= m. 
Retrieval is practically perfect (with an error margin better than 0.05"/0) for E > 2.58, 
in good agreement with results of Toulouse et a1 (1986) and Nadal et a1 (1986). 

3. Networks with synapses of bounded strength 

The model discussed in 5 2 may be generalised in various ways (Hopfield 1982, 1984, 
Nadal et a1 1986, Sompolinsky 1986). In the following two subsections we discuss the 
storage capacity of two simple generalisations of the Hopfield model which have 
synapses of bounded strength, a model with so-called clipped synapses (Hopfield 1982) 
and a family of models which implements a simple algorithm of learning within bounds. 
While a motivation to investigate clipped synapses is that they might be easier to 
construct in terms of electronic circuitry, the learning within bounds algorithm may 
be considered as a first and crude attempt to mimic the saturation effects observed in 
real biological systems. Other networks with synapses of bounded strength were 
recently studied by MCzard et a1 (1986), but these are linear generalisations of the 
Hopfield model, whereas in the present section we investigate non-linear models. 

3.1. Clipped synapses 

The genuine Hopfield model discussed above combines binary and analogue data 
processing elements, since the patterns presented to the network are given in a binary 
representation whereas the storing of these N-bit words via Hebb's learning rule is an 
analogue process. In this section we turn to a neural network which is wholly digitised, 
i.e. memory is located in so-called clipped synapses of the form 

One important reason for considering clipped synapses is that they appear to be 
easier to realise in silicon versions of the Hopfield model, which are constructed of 
simple processing elements. For odd p,  the flip-flop nature of the synapses permits an 
elementary estimate of the loading capacity. Obviously, only N (  N - 1)/2 bits of 
information can possibly be stored in this system of N neurons with its N (  N - 1)/2 
clipped synapses (25). Thus, presenting more than p = ( N  - 1)/2 patterns to this 
network, each representing an N-bit word, will overload the synaptic system. By this 
crude reasoning one can, of course, not decide whether overloading the system will 
mean a total or rather gradual loss of previously stored information. Moreover, the 
possibility cannot be excluded that retrieval of the patterns { [ f }  is significantly degraded 
before the storage capacity of the synapses is exhausted, i.e. for a < i. The aim of this 
subsection is to demonstrate that (within our independent Gaussian approximation 
(7) and replica symmetric theory) the retrieval overlaps vanish continuously at a,, = 
(2/ T) *  = 0.405, which is remarkably close to our crude estimate 4. 

The starting point is again the averaged partition function of n replicas of the 
system denoted by [Z"]. Following the procedure developed in the last section, the 
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synaptic efficacies appearing now in the argument of the non-linear sign function in 
equation ( 2 5 )  are decomposed into the high and the low 6 parts. Then the couplings 
given by equation ( 2 5 )  can be written in the form 

J,, = - sgn(Jj,’) + a$:’) ( 2 6 )  
J P  
N 

where we have used the definitions of equation (5).  Again, we use the independent 
Gaussian approximation ( 7 )  for the { J r ’ }  distribution, and we investigate whether the 
system has states of macroscopic overlap with the low 6 as defined in equation (3). 
The partial averaging over the high 6 leads to the multiple integral 

Making the substitution JI))+ cy-’Jlf’ = y ,  and breaking the integration 1 dy,] from --CO 

to 0 and from 0 to 03, the quenched average of Z ”  in equation ( 2 7 )  is expressible in 
terms of the complementary error function 

Expanding In 
sums leads to 

r 

erfc to second order in its O ( l / J p )  argument and performing the ri, 
a product of hyperbolic cosines. These are re-exponentiated to give 

The details of the subsequent procedure are the same as for the linear Hopfield model 
described in the previous section. Expanding In cosh(x), retaining only terms of the 
order 1/ N, one ends up with the following result within the replica symmetric theory: 

cl’ 
ln{ 2 cosh( p G z  + p(  :) ’” m ’6:)) 

with m v (  U = 1 , .  . . , s) and q satisfying the transcendental equations 

q = ( t a n h 2 ( / 3 G z + p ( ~ ) 1 ’ 2 m *  6))) 

m = (( f tanh ( p G z  + p ( :) ’” m - f ) >> . 
Here (( )) again denotes the combined average over the low 6 and over the Gaussian 
noise z. These are the same type of equations as in the unclipped case, the only 
modification being that the ferromagnetic part in the local field appears with a factor m. This entails, for instance, that the transcendental equation for the T = 0 retrieval 
solutions mcL = m6,, is now 

m = erf( m / G )  (33)  
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instead of (23) for linear synapses. This result has already been anticipated in the 
pioneering work of Hopfield ( 1982) who observed (without presenting the details): 
'The signal-to-noise ratio can be evaluated analytically for this clipped algorithm and 
is reduced by a factor of (2 /7~)" '  compared with the unclipped case. For a fixed error 
probability, the number of memories must be reduced by 2/7r.' The present analysis, 
however, goes far beyond this Hopfield statement and leads to the remarkable relation- 
ship that all results obtained in $ 2  and summarised in the phase diagram (figure 1) 
can be translated into the clipped case with the prescription that the inverse temperature 
p and the ratio cy = p /  N have to be rescaled by factors and 2 / ~ ,  respectively. 
(This holds also for the occurrence and implications of replica symmetry breaking.) 
Sompolinsky (1986) also considered clipped synapses and reports a reduction of the 
storage capacity relative to the Hopfield model by a factor of about 1/1.4 which is to 
be compared with our result 217~. 

KT 

a 

Figure 1. Phase boundaries of the linear Hopfield model. The broken curve A indicates 
where the macroscopic overlaps with a single pattern vanish and curve B is the AT line. 
PM and SG denote paramagnetic and spin-glass phases respectively. 

3.2. Learning within bounds 

In this subsection we study another neural network where the synaptic interconnections 
Jij are bounded functions of the synaptic efficacies 

but now the sgn function used in equation (25) is replaced by a function which is 
linear on the interval [ - a ,  a ]  and a constant otherwise, thus combining properties of 
both the linear Hopfield case and the digitising clipped version. To be precise, we 
shall work with 
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where 

This no 

for 1x1s a 
for 1xI> a. 4 ( x )  = { bx ab sgn(x) 

linear model takes account of saturation effects observed i neurobiology in 
a rather crude manner. More refined versions of learning within bounds were studied 
by Nadal et a1 (1986) and Parisi (1986), their intention being to avoid the total loss 
of the memory function for large a. The primitive version presented in this section is 
found to be unable to prevent this deterioration of the memory due to overloading. 

Our remarkable result is that in the independent Gaussian approximation the phase 
diagram of the non-linear system described by equations (34)-(36) is again of the 
Hopfield type illustrated in figure 1, with the only modification being that the tem- 
perature T and the ratio a = p / N  have to be rescaled by factors depending on the 
parameters a, b. 

The steps towards this result are just the same as those in § 3.1. 
Replicate the system and decompose the synaptic efficiencies (equation (34)) 

according to To = Ti:’+ Tf’, the two contributions being composed of the low and 
high 5, respectively. Finally, neglecting correlations in the synaptic noise generated 
by the high 5 by assuming that the probability distribution of the high T is (cf (6) and 
(7)) 

one is able to perform the averaging over the high 6. The definition of the non-linear 
function 4 in equation (36) now suggests breaking the resulting integrals into three 
contributions from regions where 4 is ‘simply’ defined, i.e. either a constant or a linear 
function of its argument. Then, as in the clipped case, the resulting integrals are 
expressible in terms of error functions. Exploiting the smallness of their arguments, 
simple algebra, which completely parallels that of § 3.1, yields the following result for 
the quenched average of the replicated partition sum: 

where 

C ( N ,  n ;  a, b ) = e x p ( u a p 2 ( N n - n 2 ) / 4 - v p s n / 2 )  (39) 
and the parameters U and v are given by 

1 / 2  

a’+ (1 - a 2 )  erf(ald2) - a(  i) exp(-az/2)) 

v = b erf(ald2) .  (41) 
Comparing this with the analogous formula (equation (8)) derived for the Hopfield 
model one can immediately conclude that the free energy per lattice site in the present 
case is related to the free energy fo in the Hopfield case via 

f ( a ,  P )  =fo(uv -2a ,  U P ) .  (42) 
The fixed point equations are readily found to be 

m = ((6 t a n h ( p G z  + vpm 6))) 
q = ( ( t a n h ’ ( p G z  + vpm 6))) (43 
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from which it follows at once that the number of patterns which can be stored with 
some given error tolerance is reduced by a factor 

O( a )  = U’/ U 

erf2( a / J 2 )  
a 2 + ( 1  - a 2 )  erf(a/J2)-(2/.ir)”’a exp(-a2/2) 

as compared with the linear Hopfield model. 
As illustrated in figure 2 ,  F ( a )  = u ’ / u  increases monotonically with the parameter 

a, remains finite in the whole interval [0, a) and interpolates smoothly between the 
limiting cases of the linear Hopfield model (a  + CO) and the clipped case ( a  + 0). 

(44) - - 

a 

Figure 2. The reduction factor for the storage capacity F ( a )  = 0 2 / u  plotted against the 
parameter a which determines the region where the synaptic function d increases linearly 
(cf equations (35) and (36)). 

The fact that the parameter b does not occur in equation (44) stems from the fact 
that it can be absorbed in the inverse temperature and hence will not appear in 
zero-temperature results such as the ratio v ’ / u  given in equation (44). 

Note that simply imposing bounds on the synaptic couplings while leaving the 
underlying Hebb rule unaltered appears not to be sufficient to prevent the deterioration 
of the memory function for large a. To achieve this, additional ingredients are required, 
like, for example, the iterative redefinition of the synaptic interconnections by learning 
(Hopfield 1982, Parisi 1986, Nadal et a1 1986) or non-uniform learning intensities 
(Nadal et a1 1986). 

4. Discussion 

We have studied generalised Hopfield memories near saturation where the number p 
of stored patterns increases with the size N of the system as p = ah’, using a Gaussian 
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approximation which neglects correlations in the synaptic noise. In the subspace of 
phases which have macroscopic (retrieval) overlaps with only one of the embedded 
patterns, the linear Hopfield model is found to be equivalent to an  S K  model with 
ferromagnetic anisotropy (see also Feigelman and Ioffe 1986). Surprisingly, the same 
conclusion also holds for the model with clipped synapses and the model with a simple 
learning within bounds algorithm, with inverse temperature and  ferromagnetic 
anisotropy, however, appropriately rescaled. If cy is small enough to permit reliable 
retrieval of information (i.e. with an error fraction C O S % ) ,  the replica symmetry is 
unbroken down to very low temperatures where the system is already almost fully 
ordered and  we expect the effects of replica symmetry breaking to be small. This, of 
course, deserves further investigation. 

The complete analogy with the S K  model breaks down when phases are studied 
which have macroscopic overlaps with several of the embedded patterns. In the linear 
Hopfield model, as cy + 0, these phases approach the mixture states studied by Amit 
et a1 (1985a). For the non-linear models studied in 5 3, however, the correct finite p 
equations (van Hemmen et a1 1986, van Hemmen and  Kiihn 1986) cannot be recovered 
from our approximation. 

This indicates that, within the Gaussian approximation, some information is lost, 
including possibly subtle details such as the order of the phase transition. 

While at finite p the linear and non-linear versions of the Hopfield moael appear 
to be quite different at very low temperatures (van Hemmen et a1 1986, van Hemmen 
and Kiihn 1986, Sompolinsky 1986), we find these differences to be smoothed out in 
the saturation limit. In both versions of the model, i t  is the synaptic noise generated 
by the embedded patterns which is ultimately responsible for the performance of the 
network. The non-linearities merely appear to be an additional source of noise. 
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